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magnetic contribution at the resonance7 one may com
pare directly the e—Wo and ix—Wo coupling constants. 
This would provide, therefore, a clear test of the uni
versality of the weak interactions. 

We have also considered the possibility that a similar 
resonant effect could be produced by a boson coupled 
to the electron-positron field electromagnetically (simi
lar to the p or co coupling to photons). However, our 
estimate shows that because of its much larger width 
(r>10 MeV) its effect is negligible compared to the 
Bhabha cross section. 

Note added in proof. Dr. R. Gatto has kindly informed 
us (private communication, 10 June 1964) that the 
processes e++e--^Wo—>e++e- and e++e^—>Wo—> 
M++M- have already been suggested [N. Cabibbo and 

7 Unlike the Wo mediated processes, the electromagnetic con
tributions are different for the muon and electron final states. 

I. INTRODUCTION 

THE conjecture has been made by Glashow and 
Rosenfeld1 that the iV**(1512) resonance is a 

member of a unitary-symmetry octet with spin-parity 
3/2"". According to them, its partners in the octet 
should be the F0*(1520), the 7^(1660), and a E* 
(undiscovered). These assignments were based chiefly 
on an analysis of partial widths for two-body decay 
modes. Martin2 has also analyzed widths, and his 
approach, a different one, reveals discrepancies in the 
octet assignment. He argues in particular that the Fo* 
is more likely a unitary singlet than a member of an 
octet. It is the purpose of this paper to present a 
dynamical mechanism which yields both singlet and 
octet systems of dy2 resonances. 

1 S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10, 
192 (1963). 

2 A. W. Martin, Nuovo Cimento (to be published). 

R. Gatto, Phys. Rev. 124, 1577 (1961), Sec. 7]. The 
brief calculations done earlier are essentially in agree
ment with the results given above. Dr. Gatto has also 
conveyed to us the information that recent work at 
Frascati indicates their Adone storage ring should be 
capable of a resolution of 0.5 MeV at 2-BeV total 
energy. The consequence of such an improved resolu
tion would be to multiply the result given in Eq. (3) 
above by a factor of 4. 
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In Sec. II the model is presented which leads to the 
results cited above. In Sec. I l l the analysis of resonant 
unitary multiplets is given. 

II. DYNAMICAL MODEL 

The prototype of the mechanism adopted here is 
the Cook-Lee model3 of the higher irN resonances. For 
the d3/2 state their model exploits the circumstance 
that an j-wave pN system may be coupled by unitarity 
to the d-w&ve 7riV system. Virtual p production feeds 
the elastic channel and provides enough attraction to 
produce the iV** below the inelastic threshold. The 
dominant force driving the left-hand cuts in their two-
channel model is assumed to arise from one-pion-
exchange coupling the wN and pN channels. That it is 
allowable to neglect a specific exchange force, so 

3 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); 127, 
297 (1962). 
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A dynamical model of pseudoscalar meson-baryon scattering in the Jp = 3/2~ state is proposed to support 
the conjecture of Glashow and Rosenfeld that the iV**(1512) resonance is a member of a unitary-symmetry 
octet. The dynamical mechanism analyzed here is based on the Cook-Lee model of the higher pion-nucleon 
resonances. It is shown that the coupling to inelastic vector meson-baryon states in a generalized two-channel 
formalism yields an octet of dzn resonances and a unitary singlet as well. The baryon, pseudoscalar-meson, 
and vector-meson octets are each assumed degenerate, so that the Cook-Lee model is immediately adaptable 
to an analysis of resonant unitary multiplets as a function of / , the Yukawa mixing parameter. It is found 
that, for / = 0.326, the attraction is slightly greater for the octet than for the singlet. The 2X2 octet ampli
tude is diagonalized by a rotation through an angle 0* = 45°; the Yukawa mixing parameter is /* = 0.428. The 
N**Nir coupling constant is computed to be g*2/(^w) =0.150 wT~2, which may be compared with the ob
served N** width. 
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essential in the lower energy f+ system,4 is borne out 
in the spirit of a sufficiency point of view by the 
success of their model. Furthermore it is observed, 
in a recent paper by Freedman,5 that the fact that the 
nucleon Regge trajectory and the trajectory on which 
the N** lies seem to be very close together implies the 
relative unimportance of the exchange force. 

The Cook-Lee model suggests the mechanism to be 
adopted for baryon (B, mass M), pseudoscalar meson 
(P, mass n) scattering in the d3/2 state. The unitarity 
relations are assumed to include s-wave baryon (B), 
vector meson (V, mass m) states along with d-wave BP 
states. The elegant development in terms of helicity 
states is described exhaustively in the Cook-Lee papers, 
and need not be reiterated here. The B, P, and V octets 
are each assumed degenerate so that the generalized 
two-channel problem is described by the matrix 
amplitude 

in which 
Fij=hMij, 

Girt=(hh'ymirt, 

(1) 

(2) 

Unprimed (primed) indices denote BP (BV) states; the 
dimensionality of the submatrices in (1) depends on the 
choice of isospin and strangeness. The h factors in
corporate the proper threshold behavior: 

A= 

and 

2M /po+M\ 

po+M\ p J 

2M 

for d waves, 

qo+M' 
for s waves, (3) 

where p and q are the cm. momenta in the BP and BV 
states, respectively, and po and qo the respective baryon 
energies. The M's are the parity eigenamplitudes 
denned in terms of helicity amplitudes by Cook and 
Lee; in their notation the superscripts f and £ may be 
1, 3, or 5 and refer to the spin multiplicity of the BV 
states. The coupling of the BV and BP channels is 
assumed to arise from P exchange as shown in Fig. 1. 

The model is defined in a pole approximation by 
prescribing the following left-hand cut discontinuites: 

discLF=0=discLF'tt, 

disc.L<?f = 2Tria{a(p2)p5(w-w0) , (4) 

discz,G*= 2wiat(T*(p2)/3Td(w—w0), 

in which a? is a parameter depending on the polarization 
4 For example, G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 

(1956); S. C. Frautschi and J. D. Walecka, ibid. 120, 1486 (1960). 
5 D. Z. Freedman, Phys. Rev. 134, B652 (1964). 

FIG. 1. P exchange diagram. 

of F,6 and a(p2) describes T= 1, / = l7T7r scattering: 

(r(p2)== -967r2g(87r/3)1/2p(p2-4M
2)-1^'5 sin5. (5) 

Here, 5 is the phase shift for TTT scattering in the T=J 
= 1 state. This construction follows Cook and Lee in 
which the inrp vertex is so expressed; the function a 
incorporates g, the wNN coupling constant, so that the 
generalization employed here is represented by /?, a 
matrix of isospin factors and ratios of octet model 
coupling constants to g. The dimensionality of ($ depends 
on the choice of isospin and strangeness. 

The N over D method can be invoked by defining 

/N 0* \ 
9 1 = 1 - ) ^ 

\Of N't*/ 
and 

(D E* 
£>=( . ) (7) • ( - ) 

such that 31= $£) and Im£>= — irp'Sl in which 

(P 0 ' 

•c :> (8) 

the phase-space factors are (with 6 functions sup
pressed) : 

1 pb 1 
p— ? for d waves, 

4(2TT)3 W (po+M)z 

and (9) 

1 q (p2-4/x2)1/2 

(qo+M), for s waves, 
3 2 ( 2 T T ) 6 W p 

each multiplied by unit matrices of the appropriate 
dimensionality. The matrix multiplication 91= ̂ 3) may 
be written out in detail for each submatrix as follows: 

N(w) = F(w)D(w)+"£ d\&(w,\)E*(w,\), 

0*(w,iJL) = F(w)Et(w,n) 

+Z /"iX(?»(w,X)Zy^(«;,X,M), 

d*(w,v) = Gr(w,v)D(w) (10) 

+ E / d\Ff^(w,v,\)E*(w,\) , 

N'K (w, v,n) = G* (w, v)E* (w,fx) 

+ E [d\F'^(w,v,\)D'rt(w,\»), 

6 As the following analysis will reveal, the a's turn out to be real. 
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TABLE I. Summary of states and factors for Eq. (17). 

S, T 

1,0 
1,1 
0,1 
0,1 

- 1 , 0 
- 1 , 1 
- 1 , 2 

z > 2 

Z, 2 

- 3 , 0 
- 3 , 1 

£ P states 

NK 
NK 
NTT, NV, AK, XK 
Nv,2K 
NK, Ar], STT, ZK 
NK, Ax, STT, ST?, %K 
STT 

AK, 2i£, HTT, AV 
2Z ,HTT 

Si? 
EK 

5 7 states 

NK* 
NK* 
NP) Nip, AK*, 2K* 
Np, XK* 
NK*, A<p, SP, EK* 
NK*, AP} Sp, 2<p, ZK* 
Sp 
AX*, 2K*, Sp, E*> 
2K*, Sp 
SK* 
EX* 

Representations 

10 
27 
8, 8', 10, 27 
10, 27 
1, 8, 8', 27 
8, 8', 10, 10, 27 
27 
8, 8', 10, 27 
10,27 
10 
27 

Determinants 

#(10) 
D(27) 
Z>(8,8')£>(I0)Z)(27) 
D(10)D(27) 
D{1)D(8,8')D{27) 
D(8.8')D(10)D(i0)D(27) 
D(27) 
D(8,S')D(10)D(27) 
D(l6)D(27) 
D(10) 
D{27) 

in which X, /z, v stand for the TTTT mass squared. Equa
tions (4), (6), (7), and (10) lead to separable integral 
equations for each element of 91; the solution of these 
and the resulting expressions for $ can readily be 
obtained as generalizations of Cook and Lee's results. 
The submatrix solutions for £F are 

F(w) = v(w)[tl— (W—WO)2U(W)V(W)I3T^']'~1^TI3 , 

G*(W,JU)=- - [ 1 - (w-w*)2u(w)v{w)pT&yipT, 

G*(w,v)--

Wo—w 

a^a(v) 
- 0 [ 1 - (w-wQyu{w)v{iv)pTfi]-1, 

(11) 

Wo—w 

F'S* (w, v,fx) = u (w)a{a(v)ai:(T* (/x) 

X / 3 [ l - (w-w0)Mw)v(w)PTPj~lPT> 

In these expressions u and v are defined as 

pdx 
u(w) = 

/.CO 

JM+,X (X—W)(X—WQ)2 

(12) 

and 

*M=Ea,2 [dp2\*(p2)\2[ 
p'dx 

M+m (x — w)(x—Wo)2 

The 7T7rp coupling constant /pT7r may be introduced by 
setting 

k(p2) 12= 16p(2*) V ~ V)" 1 V/W(™ 2 - /^ ) • (13) 
As in Cook and Lee, the parameters av and WQ are 

determined after explicit evaluation of the d3/2 ??= 1, 3, 5 
projections of the diagram of Fig. 1. The calculation 
yields a pole at the elastic threshold so the choice WQ 
= M-{-fi is made. Since resonances are anticipated 
between M-\-fx and M-\-m} a , is determined by matching 
an(w—WQ)^ to the value of the projection at the 
inelastic threshold; at this point in the range of interest 
the BP phase space factor has its greatest value. The 
results of the matching procedure are 

<xi = -az = 
y/Z V3 

-a& = 
tn—fi (2M+M)2—JJL2 

3m yP+Mm 
(14) 

The numbers used in the calculation then are 

M=2.9mx, w=2.06/*, M=2.SSfx 

gV(4ir)=15, /p„Y(4*-) = 2. 

(15) 

This completes the description of the model. I t is 
structurally identical with that of Cook and Lee; the 
generalization of the elastic and inelastic channels is the 
only feature added for the analysis of resonant unitary 
multiplets. Under the assumption of degenerate B, Py 

and V octets this generalization is achieved by the 
inclusion of the factor ($, a matrix the rows and columns 
of which are labeled by inelastic (BV) and elastic 
(BP) states, respectively. The approach is in the spirit 
of that adopted by Martin and Wali.7 A dynamical 
model which has proven successful in the explanation of 
a wN scattering resonance is enlarged upon to treat 
BP scattering and to indicate which of the unitary 
multiplets may be resonant. 

Cook and Lee allowed the parameter which repre
sents I ^ 2 to be variable in order to fit experiment; 
they subsequently compared its determination with the 
result of calculating the diagram. For the d3/2 resonance 
agreement was not bad. In this problem more freedom 
is allowed in the calculation of the input diagram. An 
enormous number of channels are assumed to be 
coupled and, under the assumption of unitary sym
metry,8 all the input coupling constants are known in 
terms of a single adjustable parameter. In the next 
section the results as a function of this parameter are 
given. 

III. RESONANT UNITARY MULTIPLETS 

Equations (11) give the solutions for scattering in 
this model. For energies below w=M+mf the inelastic 
threshold, resonances occur when 

Re d e t C l - (w-wQ)*u(w)v(w)0T0l=O. (16) 

7 A. W. Martin and K. C. Wali, Phys. Rev. 130, 24SS (1963). 
8 M . Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman, 

Nucl. Phys. 26, 222 (1961). 
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Since the central issue in this work is the occurrence of 
resonant unitary multiplets, the equivalent equation is 
more relevant and easier to compute: 

Re d e t [ l - (W~WQ)2U{W)V(W)$T$~]=0. (17) 

Here the tilde means that the matrix has been trans
formed from the particle basis to the unitary basis. 
Under the assumption of unitary symmetry, the 
representations 1, 10, 10, and 27 then may occur only 
on the diagonal of /?; the octet representation may occur 
as a symmetric 2X2 submatrix [labeled (8,8')]. Table I 
lists, for each choice of strangeness and isospin (S,T), 
the BP and BV states which occur as well as the unitary 
multiplets; in the last column is given the form of the 
left-hand side of Eq. (17). The factors listed there are 
defined by 

D(R)=l-(w-w<>)2u(w)v(w)aB
2 (18) 

for R= 1, 10, 10, and 27, and 

D(8,8') = dettl-(w-wo)2u(w)v(w)p8
Tp8~], (19) 

where 

(a8 h \ 

\b8 a8J 
(20) 

The coefficients O,R and b8 depend only on the Yukawa 
mixing parameter / for the BBP vertex9; they are 

a10=—aw=2(f—l), 

a 2 7 = - 2 / , (21) 

a8 ' = 08' = 3 / , 

bs = _ 5 i / 2 ( W ) < 

An orthogonal transformation parameterized by the 
angle d* diagonalizes the (8,8') submatrix of F10; if the 
new basis is denoted by (8i,82) the rotation is denned 
by: 

'cos0*—sin0*^ 

^sin0* cos0*/ 

The (8,8') determinant becomes 

0(8,8 ') = #(8i)Z>(8»), (23) 

where D(Si) and Z>(82) are expressions of the form of 
Eq. (18) with 

a8i=a8—b8, 

a82=a8+b8. (24) 

The circumstance that a8=a8> leads to the result that 

/ 8 A /cos0*-sin0*\ / 8 \ 

\ 8 2 / \sin0* cos0*/ \ 8 7 ' 

0*=45°. (25) 

9 The notation of Martin and Wali (Ref. 7) is followed. See also 
A. W. Martin and K. C. Wali, Nuovo Cimento 31, 1324 (1964) ; 
J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963). 

10 R. E. Cutkosky, Ann. Phys. (N. Y.) 23, 415 (1963). 

FIG. 2. Values of / 2 

giving a resonance at w* 
for each representation. 
10 and 10 fall on the • 
same curve. The hori
zontal line at /=0.326 
corresponds to 0 = 33°. 

-I 

27 \ JO 

This is the result one would obtain from a diagonaliza-
tion of the octet portion of the box diagram obtained by 
folding the diagram of Fig. 1 back-to-back with itself.11 

As such, this finding does not require the full dynamical 
content of multichannel unitarity; the existence of a 
resonance, its position and width of course do. The 
result (25), and the determination of the B**BP mixing 
parameter, have been also obtained by Freedman.5 

In Fig. 2 are plotted the values of / producing a 
resonance at w=ze>* in each of the representations 1, 10, 
10, 27, 81, and 82. If values of / are disallowed which lie 
outside the range obtained by Martin and Wali7 for the 
occurrence of the ^3/2 decuplet then the possibility of a 
27-plot can be rejected. If the lack of experimental 
evidence for an NK(T=0) resonance is used to reject 
10, then 10 is also rejected and the Martin and Wali 
range can be restricted to 0 .25</<0 .56 . In this range 
only 1 and 81 resonate; for a BBP mixing angle 6= S3010 

( / = 0.326) the positions of the resonances are 

wr = 4.80/*, 

w8*=4.69At, 
(26) 

so that for this case 81 is slightly more attractive than 1. 
The (8,8') submatrix for the diagram of Fig. 3 is 

"20 
- ( l - / * ) 2 -4 (5) 1 / 2 /* ( l - /* ) 

- 4 ( 5 ) 1 / 2 / * ( l - / * ) 12/*2 

(27) 

where / * is the B**BP mixing parameter. If the angle 
parameterizing the orthogonal transformation which 
diagonalizes (27) is identified with 6* then 0*=45° 
implies that 

/ * = (5)1/2/ (3+ (5)1'2) = 0.428. (28) 

A width parameter may be assigned to the octet 

Frc 3. B** pole diagram. 

11 A. W. Martin (private communication). 

file:///sin0*
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resonance by the definition 

r8 = 2rimZH8i) / ( —ReZ)(8i)) 1 , (29) 

and similarly for the singlet. Numerically these are 

r!=68.6MeV, 

r8=72.8MeV. (30) 

The coupling constant g* for the N**Nir vertex can be 
defined in terms of the residue at the pole. In a neigh
borhood of w=Wg*, F, evaluated in the wN(T= J) state, 
is 

ir(T=l/2) -_ 
97r 2 r 8 [ (w 8 *+M) 2 -M 2 ] 3 

"(31) 

The coupling constant is given by 

g*V(4ir)= (7+3(5)1/2)r8w(^0+M)/(20^) = 0.150 mv~\ 
(32) 

Martin2 has shown that the value 0.247 mv~~2 cor
responds to the observed TV** width. 

IV. CONCLUDING REMARKS 

The occurrence of unitary singlet and octet systems 
of resonances has been shown to be the consequence of 
the appropriate generalization of the Cook-Lee model. 
The assignments for the multiplets deduced here have 
been discussed elsewhere.1/2 The fact that both a singlet 
and an octet occur in this model may lend some theo
retical support to the intriguing conjecture2 that the 
F0* (1520) is a manifestation of singlet-octet mixing. 
There are some aspects of the experimental situation 
which do not tend to support the Glashow and Rosen-

feld assignments,12 but these should not detract from 
the issue treated here, as long as there remain members 
of the multiplet with the established quantum numbers. 

The dynamical model of Freedman5 bears some 
resemblance to that described here. His method is based 
on single-channel unitarity, but with an input which 
contains an element of inelastic scattering. There is a 
difference of principle. As pointed out by Cook and Lee, 
the inclusion of inelastic states in the unitarity relations 
is essential to an accurate treatment of elastic scattering 
at these energies. In particular, the decrease in cross 
section above the inelastic threshold must be insured. 

Finally it should be mentioned that the Martin and 
Wali model9 also yields a dz/2 unitary singlet, but by 
means of entirely different forces and with elastic 
unitarity alone. Perhaps one could conclude from their 
work and from that described here that an admixture of 
the two, including inelastic unitarity, would always 
yield the singlet and introduce the octet as well, and 
that a final accurate positioning of the resonances 
results. To establish this would entail quite a formidable 
program of calculation. 
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